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THE HESTOCK AND HENSTOCK DELTA INTEGRALS

Jae Myung Park*, Deok Ho Lee**, Ju Han Yoon***, Young
Kuk Kim****, and Jong Tae Lim*****

Abstract. In this paper, we study the Henstock delta integral,
which generalizes the Henstock integral. In particular, we study
the relation between the Henstock and Henstock delta integrals.

1. Introduction and preliminaries

The Henstock delta integral on time scales was introduced by Allan
Peterson and Bevan Thompson [2].

In this paper, we investigate the relation between the Henstock and
Henstock delta integrals.

First, we introduce some concepts related to the notion of time scales.
A time scale T is any closed nonempty subset of R, with the topology
inherited from the standard topology on the real numbers R. For each
t ∈ T, we define the forward jump operator σ(t) by

σ(t) = inf{z > t : z ∈ T}
and the backward jump operator ρ(t) by

ρ(t) = sup{z < t : z ∈ T}
where inf φ = supT and supφ = inf T.

If σ(t) > t, we say the t is right-scattered, while if ρ(t) < t, we say
that t is left-scattered. If σ(t) = t, we say that t is right-dense,while
if ρ(t) = t, we say that t is left-dense. The forward graininess function
µ(t) is defined by µ(t) = σ(t)− t, and the backward graininess function
ν(t) is defined by ν(t) = t− ρ(t).
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For a, b ∈ T, we define the time scale interval in T by

[a, b]T = {t ∈ T : a ≤ t ≤ b}.

2. The Henstock and Henstock delta integrals

Definition 2.1. ([2]) δ = (δL, δR) is a4-gauge on [a, b]T by δL(t) > 0
on (a, b]T, δR(t) > 0 on [a, b)T, δL(a) ≥ 0, δR(b) ≥ 0, and δR(t) ≥ µ(t)
for each t ∈ [a, b)T.

Definition 2.2. ([2]) A collection P = {(ξi, [ti−1, ti]T)}n
i=1 of tagged

intervals is a Henstock partition of [a, b]T if
⋃n

i=1[ti−1, ti]T = [a, b]T,
[ti−1, ti]T ⊂ [ξi − δL(ξi), ξi + δR(ξi)] and ξi ∈ [ti−1, ti]T for each i =
1, 2, · · · , n.

For Henstock partition P = {(ξi, [ti−1, ti])}n
i=1, we write

S(f,P) =
n∑

i=1

f(ξi)(ti − ti−1),

whenever f : [a, b]T → R.

Definition 2.3. ([2]). A function f : [a, b]T → R is Henstock delta
integrable (or H4-integral) on [a, b]T if there exists a number A such
that for each ε > 0 there exists a 4-gauge δ on [a, b]T such that

∣∣∣S(f,D)−A
∣∣∣ < ε

for every δ-fine Henstock partition D of [a, b]T. A number A is called
the H4-integral of f on [a, b]T, and we write A = (H4)

∫ b
a f4t.

Recall that f : [a, b] → R is Henstock integrable (or H-integrable) on
[a, b] if there exists a number A such that for each ε > 0 there exists a
gauge δ : [a, b] → R+ on [a, b] such that

∣∣∣S(f,P)−A
∣∣∣ < ε

for every δ-fine Henstock partition P of [a, b].

Theorem 2.4. A function f : [a, b] → R is H-integrable on [a, b] if
and only if f is H4-integrable on [a, b].
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Proof. Let f be H-integrable on [a, b] and let ε > 0. Then there exists
a gauge δ : [a, b] → R+ such that

∣∣∣S(f,P)− (H)
∫ b

a
f
∣∣∣ < ε

for every δ-fine Henstock partition P of [a, b].
Define δ∗ = (δL, δR) by δL(t) = δR(t) = δ

2 for each t ∈ [a, b]. Assume
that P = {(ξi, [ti−1, ti])}n

i=1 is a δ∗-fine partition of [a, b]. Then P is
δ-fine and

∣∣S(f,P)− (H)
∫ b

a
f
∣∣ < ε.

Hence f is H4-integrable on [a, b] and (H4)
∫ b
a f4t = (H)

∫ b
a f . Con-

versely, assume that f is H4-integrable on [a, b] and let ε > 0. Then
there exists a 4-gauge δ∗ = (δL, δR) such that

∣∣∣S(f,P)− (H4)
∫ b

a
f4t

∣∣∣ < ε

for every δ∗-fine partition P of [a, b].
Define

δ(t) =





min{δL(t), δR(t)} if t ∈ (a, b)
δR(t) if t = a
δL(t) if t = b.

Assume that P = {(ξi, [ti−1, ti])}n
i=1 is a δ-fine partition of [a, b].

Then P is δ∗-fine and
∣∣S(f,P)− (H4)

∫ b

a
f4t

∣∣ < ε.

Hence f is H-integrable on [a, b] and (H)
∫ b
a f = (H4)

∫ b
a f4t.

Let f : [a, b]T → R be a function on [a, b]T, and let {(ak, bk)}∞k=1 be
the sequence of intervals contiguous to [a, b]T in [a, b].

Define a function f∗ : [a, b] → R on [a, b] by

f∗(t) =

{
f(ak) if t ∈ (ak , bk ) for some k
f(t) if t ∈ [a, b]T.

Then we have the following theorem.

Theorem 2.5. If f∗ : [a, b] → R is H-integrable on [a, b], then f :
[a, b]T → R is H4-integrable on [a, b]T and (H4)

∫ b
a f4t = (H)

∫ b
a f∗.
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Proof. Let f∗ : [a, b] → R be H-integrable on [a, b] and let ε > 0. By
theorem 2.4, there exists a 4-gauge δ = (δL, δR) on [a, b] such that

∣∣S(f∗,P)− (H)
∫ b

a
f∗

∣∣ <
ε

2
for every δ-fine Henstock partition P of [a, b].

Define a 4-gauge δ∗ = (δ∗L, δ∗R) on [a, b]T by

δ∗L(t) = δL(t)

δ∗R(t) =

{
δR(t) if t is a right−dense point of [a, b]T
σ(t)− t if t is a right−scattered point of [a, b]T.

Let D = {(ξi, [ti−1, ti])}n
i=1 be a δ∗-fine partition of [a, b]T. Define

A = {i : ξi is a right− scattered point of [a, b]T and

[ξi , σ(ξi)] ⊂ [ti−1 , ti ]},
A1 = {i ∈ A : ti−1 = ξi}, A2 = {i ∈ A : ti−1 < ξi}, and

B = {1, 2, 3, · · · , n} −A.
Let D0 = {(ξi, [ti−1, ti]) : i ∈ B}. Then D0 is a δ-fine partial partition

of [a, b]. For each i ∈ A, there is a δ-fine partition D′
i of [ξi, σ(ξi)] such

that ∣∣∣S(f∗, D′
i)− (H)

∫ σ(ξi)

ξi

f∗
∣∣∣ <

ε

2n
.

For each i ∈ A, let Di =

{
D′

i if i ∈ A
D′

i

⋃{(ξi, [ti−1, ξi])} if i ∈ A2.

Then P = D0 ∪ [
⋃

i∈A Di] is a δ-fine partition of [a, b] and we have
∣∣∣S(f, D)− (H)

∫ b

a
f∗

∣∣∣

≤
∣∣∣S(f, D)− S(f∗,P)

∣∣∣ +
∣∣∣S(f∗,P)− (H)

∫ b

a
f∗

∣∣∣

≤
∑

i∈A1

∣∣f(ξi)(ti − ti−1)− S(f∗, Di)
∣∣

+
∑

i∈A2

∣∣f(ξi)(ti − ti−1)− S(f∗, Di)
∣∣ +

ε

2

=
∑

i∈A1

∣∣f(ξi)(σ(ξi)− ξi)− S(f∗, D′
i)

∣∣

+
∑

i∈A2

∣∣f(ξi)(σ(ξi)− ξi)− S(f∗, D′
i)

∣∣ +
ε

2



The Hestock and Henstock delta integrals 439

=
∑

i∈A

∣∣∣(H)
∫ σ(ξi)

ξi

f∗ − S(f∗, D′
i)

∣∣ +
ε

2

<
ε

2
+

ε

2
< ε.

Hence, f is H4-integral on [a, b]T and (H4)
∫ b
a f4t = (H)

∫ b
a f∗.
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